The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen.
نویسندگان
چکیده
The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ∼-0.1 V and ∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.
منابع مشابه
2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction.
We explore the use of two-dimensional (2D) MoS2 nanosheets as an electrocatalyst for the Hydrogen Evolution Reaction (HER). Using four commonly employed commercially available carbon based electrode support materials, namely edge plane pyrolytic graphite (EPPG), glassy carbon (GC), boron-doped diamond (BDD) and screen-printed graphite electrodes (SPE), we critically evaluate the reported electr...
متن کاملEnhanced Phtocatalytic Activity of α-Fe2O3 Nanoparticles Using 2D MoS2 Nanosheets
α‒Fe2O3/MoS2 nanocomposites were synthesized via hydrothermal method and characterized in terms of crystal structure, particle size and morphology, elemental purity and optical properties. Results confirmed the formation of α‒Fe2O3/MoS2 nanocomposites containing hematite nanoparticles with average diameter of 40 nm and MoS2 nanosheets with hexagonal crystal structure and sheet thickness o...
متن کاملHierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution
Highly active and stable MoS2/carbon hierarchical spheres with abundant active edge sites were fabricated by a simple micro-emulsion procedure where PVP was used as the carbon source, and carbon disulfide as the sulfur source and oil phase in micro-emulsion to control the morphology of MoS2. Hierarchical spheres of MoS2/carbon with a diameter of ca. 500 nm were obtained and characterized by sca...
متن کاملDispersive growth and laser-induced rippling of large-area singlelayer MoS2 nanosheets by CVD on c-plane sapphire substrate
Vapor-phase growth of large-area two-dimensional (2D) MoS2 nanosheets via reactions of sulfur with MoO3 precursors vaporized and transferred from powder sources onto a target substrate has been rapidly progressing. Recent studies revealed that the growth yield of high quality singlelayer (SL) MoS2 is essentially controlled by quite a few parameters including the temperature, the pressure, the a...
متن کاملPorous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction.
Advanced materials for electrocatalytic water splitting are central to renewable energy research. In this work, MoS2 nanosheets supported on porous metallic MoO2 (MoS2/MoO2) were produced by sulfuration treatments of porous and highly conductive MoO2 for the hydrogen evolution reaction. Porous MoO2 with one-dimensional channel-like structures was prepared by calcination at elevated temperatures...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature materials
دوره 15 9 شماره
صفحات -
تاریخ انتشار 2016